H(1)=-5t^2+10t

Simple and best practice solution for H(1)=-5t^2+10t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(1)=-5t^2+10t equation:



(1)=-5H^2+10H
We move all terms to the left:
(1)-(-5H^2+10H)=0
We get rid of parentheses
5H^2-10H+1=0
a = 5; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·5·1
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{5}}{2*5}=\frac{10-4\sqrt{5}}{10} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{5}}{2*5}=\frac{10+4\sqrt{5}}{10} $

See similar equations:

| -4.34(q+12)=-17.36 | | x+(+12)=25 | | 2(v+5)+5v=-39 | | 7a-5=-320 | | 7a-5=230 | | -40=y/6 | | -10=6-j | | 6a-3=63 | | .25t-6+.5t=8 | | 48/m=8 | | 4(x-8)-7x=-17 | | 5c+4=-161 | | 2/3x-4=-1/3x-14 | | 4(p-94)+-62=-62 | | 9-2k=5 | | 5c+4=161 | | 95-b=-5 | | 7y+4=256 | | -22=-8w+2(w+4) | | 4(q+40)-48=96 | | -36=2-5f+13+4f | | 6(y-79)=78 | | 2x-3/4=5/2 | | 3a=-66 | | -15=3(w+100)-87 | | -4y=-88 | | 3​/10 =(−45​ )+g | | -x/6=-25 | | -3-6x=19 | | -8n=232 | | -7x-129=14x+186 | | 0.8y-5+16=20 |

Equations solver categories